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A singular perturbation method is used to find the normal solutions of the 
Boltzmann equation with small Knudsen number. It is proved that the secular 
terms may be removed by improving the Hilbert expansion and the Enskog 
expansion. 
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1. I N T R O D U C T I O N  

The Boltzmann equation (B.E.) is basic to rarefied gas dynamics(l~ and has 
been discussed extensively over the years. On the one hand, the relaxation 
in rarefied gases from a nonequilibrium to an equilibrium state is, concep- 
tually, a central problem in statistical mechanics and in irreversible ther- 
modynamics. On the other hand, rarefied gas dynamics contains a veriety 
of effects, interesting in themselves and important  for applications. 

In this paper we reexamine the systematics for solving the B.E. when 
the Knudsen number  is small. We shall take it for granted that the B.E. 
correctly describes the physics, and that its solution under proper initial 
and boundary conditions exists. 

Due to its complexity, it is generally out of the question to solve the 
B.E. exactly. The few exact solutions known, such as the equilibrium 
Maxwell distribution and the recently found BKW mode, (2 4) are insuf- 
ficient to elucidate general relaxation behavior. One must therefore resort 
to approximate methods, for example, the moment  method, (5) the model 
method, (6) and the Monte Carlo method. (7~ In particular, for small Knud- 
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562 Ding and Huang 

sen numbers, the singular perturbation method is suitable, and will be dis- 
cussed in detail in what follows. 

The B.E. for a gas of monatomic molecules in the absence of an exter- 
nal force can be written (~1 

ef 0f 1 c(f, f )  
75+v' =7 (1) 

C(j; f l ) =  f dw dfi' uo(h" fi', u)[ f (w') f l (v ' ) - f (w)  fx(v)] (2) 

where f = f ( r ,  v, t) is the single-particle distribution function, v, w and 
v', w' are velocities of a pair of molecules before and after the collision, 
respectively, and the corresponding relative velocities are u = v -  w = ufi 
and u ' =  v '=  w ' =  ufi' (where the caret denotes a unit vector). Furthermore, 
(l/z) o(ti. fi', u) is the differential cross section and e is the Knudsen num- 
ber, defined by e = ljlo, where I r is the molecular mean free path and lo the 
characteristic length of the system. The normalization of f is chosen to be 
(with V the total volume) 

r l f f dvd l r=l  (3) 

We also choose units of length, time, and mass such that the conservation 
of energy can be expressed by 

V l fv2f fvdr=3 (4) 

(Another condition concerning the units will be added in Section 2.) For 
small Knudsen number, e ~ 1, we can take e as the perturbation parameter. 
The form of Eq. (1) naturally suggests a singular perturbation problem. 

For  Maxwell molecules (whose differential cross section is inversely 
proportional to the relative speed of the colliding molecules), the B.E. sim- 
plifies. The product of u and a is independent of u in this case. Defining 

UO'(t~ �9 ~ ' ,  t2) = g M ( / ~ "  /~')  (5) 

we can then write the B.E. as 

with 

Of+ v. gf  1 CM(f, f )  (6) 
gt 

CM(f,f~)=fdwd~ ' gM(~'~')[f(w')f~(v')--f(w)f,(v)] (7) 
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Since the calculations simplify considerably with Maxwell molecules, we 
shall mainly, in Sections 2-5, consider that model. However, the con- 
clusions of this paper are essentially model independent. This will be shown 
in Sections 6 and 7. 

Hilbert first used the perturbation method to solve the B.E. with the 
small parameter e. (8) He proposed that one should seek distribution 
functions in the form of a power series in 

f= Uf (8) 
j - 0  

The Hilbert expansion yields a sequence of the inviscid fluid equations 
(Euler equations). Consequently, it is obvious that this expansion can be 
correct for a finite time only. It cannot be used to discuss the relaxation of 
a nonequilibrium state to equilibrium. Enskog improved the Hilbert 
method and expanded not only f, as in Eq. (8), but also (9) 

0 ~ 0j 
= i~  ~ e j - -  (9) 

= 0t 

and kept the hydrodynamic variables (mass density, local velocity, and 
temperature) unexpanded. As a result, the Enskog expansion yields the 
Euler equations, Navier-Stokes equations, Burnett equations, and super- 
Burnett equations in successive order of e. The order of space derivatives of 
the distribution function in these equations is increasingly higher, and more 
and more boundary conditions are needed. However, it is in general 
impossible to find boundary conditions beyond those needed in the 
Navier-Stokes equations. This is the boundary condition difficulty of the 
Enskog expansion. 

Both the Hilbert and the Enskog expansions are invalid in the "initial 
layer," the "boundary layer," and the "shock wave layer," because they lead 
to distribution functions that depend on time and space only through the 
hydrodynamic variables. Therefore the solutions of the B.E. in these three 
layers have to be discussed anew. A solution that is valid in time and space 
regions excluding these three layers is called a normal solution. 

In the present paper we restrict ourselves to a discussion of normal 
solutions. A companion paper (jS~ will demonstrate how a natural extension 
of our method permits a discussion of the initial layer as well. 

Cercignani (1) proposed (see also Ref. 14) an alernative to the Hilbert 
and the Enskog expansions. He expanded f as in Eq. (8), truncated the 
expansion of ~?/~?t as 

"~ ~j 0j (10) 
9t Ot ] = 0  
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and assumed that the hydrodynamic variables should be expanded in 
powers of ~N+ 1. His expansion reduces to the Hilbert expansion for N =  0 
and to the Enskog expansion when N ~  oe. The proper choice for N is, 
according to Cercignani, N = 1. 

In the present paper we show that macroscopic arguments are not 
necessary for a construction of the proper expansion in e. We shall show 
that the B.E. i tself  gives N =  1, under the natural requirement that no 
secular terms appears. As far as the expansion is concerned, our conclusion 
coincides with that of Cercignani. However, we also show that the 
corresponding expansion of the hydrodynamic variables should be in 
powers of e, rather than in powers of gN+l= g2 as used by Cercignani. 
That removal of secular terms has this as a consequence becomes clear 
only when one wants to connect the normal solution to solutions through 
the initial and boundary layers. This will be discussed in detail in a com- 
panion paper/15) 

Since our method is based on a systematic removal of secular terms, it 
can be used to study any kind of relaxation process. This is its principal 
advantage over other procedures. In the present paper we shall, for sim- 
plicity, confine the discussion to planar geometry. The method and the con- 
clusions are general, however, and can be extended to more complicated 
geometries without essential difficulties. 

2. THE D O M I N A N T  T E R M S  IN THE E X P A N S I O N  

Bobylev ~l~ found that the Fourier transform may be used to simplify 
the B.E. (1). He defined the generating function as 

~o(r, k, t ) = I  [ e x p ( - i k . v ) ]  f ( r ,  v, t) dv (11) 

Then Eq. (1) can be written as 

Ocp . c32(p 1 
~-7+, ~ -g~ .  & = 7 J(~0, ~o) (12 )  

where 

J((p, q0,) = f [exp( - ik. v)] C(f, f ,  ) & 

= f dv dw d~' uo(~. tY, u) 

x [ f ( w ' ) f l ( v ' ) - f ( w ) f l ( v ) ]  e x p ( - i k  "v) (13) 
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Since Eq. (13) is invariant when we interchange (v, w) and (v', w'), and u, 
h. fi', and du dw dh' are invariant also, we have 

J(~o,~Ol)=f~dwL(v)f(w)exp -gik'(v+w) f(u,k) (14) 

where 

F(u, k) = f d~' ua(~" ~', u) 

[exp (--  ~ i/~- exp (--  ~ 

It is evident that F(u, k) is invariant when we interchange the directions of 
k and u but keep their magnitudes unchanged. Therefore 

F(u, k) = f d~/' ury(/~ �9 fi', u) 

l ilc " hku) ] • [exp ( -  �89 ih" ~'ku) -exp ( -  -~ 

Substituting the above expression into Eq. (14), we obtain 

J(qL ~0~) = f d~' dk' g(/~. ~', k') 

• {~0, [k ( '  + ~')- k'] ~ Ik (~- ~') 

where 

+ k ' ] - ~ p l ( k - k ' )  ~o(k')~} 

(15) 

g(/r fi', k') = (2~z) 3 ~ du [exp(- iu .  k') ua(lc. ~', u) 

For Maxwell molecules, it is easy to obtain from the above formula and 
Eq. (5) that 

g(k' fi', k') = gM(/~- ~') cS(k') 

so Eq. (15) is reduced to 

J(q~, r = JM(CP, q~l) ~ f dtJ' gM(k. 2') 

• {~PI [k (/~ + h')? q~ [k (/~- fi')] - ~o,(k) q~(0)) (16) 

822/45/3-4-14 
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In planar geometry, we can write 

f = f ( x ,  v, v, t) (17) 

where v = 3 ' ~ x = c o s  a; here ~ is the angle between v and the x axis. 
Correspondingly, the generating function is written 

~ = q~(x, k, #, t) (18) 

where kt--/~~x = cos 0'; here 0' is the angle between k and the x axis. In 
this case, Eq. (12) may be written as 

0(/} 02q} i (1--# 2) 02{0 1 
* - -  - -  - Y(~0, ~o) (19) 

0t ~-i#0k0x ' k @ 0 x  e 

In case there is no exchange of energy between the system and the surroun- 
dings, the stable stationary state is the Maxwell distribution, i.e., 

fe = (2~C) 3/2r vZ/2 (20) 

or, equivalently, 

% = e k2/2 (21) 

We consider the Maxwell molecules first. For Maxwell molecules, 
Eq. (19) becomes 

0(~0 . 02(~ i(1 __~2) 02(~0 1JM(q 0, qo) (22) 
0t l # ~ +  k 0/~0x 

Let the normal solution of Eq. (22) be written in the form 

q~, = (POE1 + ~(x, k, #, t)] (23) 

where 

[ '  ] (Po = p(x ,  t) exp - ~ k20(x,  t) - ikttc(x,  t) (24) 

and O(x, t) and c(x,  t) are, to zeroth order in a, the temperature and 
average velocity field, respectively. Substituting Eqs. (23) and (24) into 
Eq. (22), we obtain 

c I O n + D o + D o e  ] IM(~) = --JM(~, ~) + -- + D, (~) + D2(~) 
p Lat 

(25) 
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where 

IM(~.) = JM( 1, ~) -~- JM(~, l) 

Do= + p a x  J +  N + c ~ x + p  ( - i k # )  

+ Z+~S;x+5 Ox3\ 

00/ik 3 #) 
+3 ox~ T 

D~(r c3--~c-~x qa2r i (1--# 2) a2r 

D2(~) = (~ 63p k26qO 
8x 2 8x 

Denoting 

k 8# 8x 

(26) 

(27) 

(28) 

(29) 

( -- ik) n 
e ~ -  n! Pt(#), n=O,  1,...; l = n , n - 2  ..... l o r O  (30) 

where P/(#) are Legendre polynomials, we have (1~ 

IM(e.l) = --2,,ten/ (3 1 ) 

2,,,= 2re ~.)~ dv gM(V) 1 q- ~n,0~L0 -- 

- - ( ~ - ~ ) n / 2 P l ( ( ~ - ~ ) l / 2 ) l  (32) 

It should be noticed that 

200 ='~I1 = 220 = 0 
(33) 

2~.o=2n ~ , i ,  n = 4 , 6  .... 

the first three of which are the reflection of the conservation laws of mass, 
momentum, and energy in the collision. For Maxwell molecules we may 
choose 

240 = 1 (34) 

which constitutes the third condition on the units of length, time, and mass 
alluded to in Section 1. 
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Let 

3= ~ eJ~(J) ~ eJV a(J)(, - t)en, (35) 
/ ~ n l  ~ , ~  

j - - O  j ~ O  n , l  

where the summation includes n = 0 ,  1,...; l---n, n-2, . . . ,  1 or 0. Since 
q~(x, k, #, t) = ~0(x, - k ,  - # ,  t), (n + l) have to be kept even. We may put 

a(O) ~(o)_,~(o) = 0 (36) 
00 ~--Ull  - - ~ 2 0  

without loss of generality. Substituting Eq. (35) into Eq. (25), we obtain 
from the a~ approximation that 

which has the solution 

IM(~(O)) = __jM(~(O), ~(0)) 

~/~ (37) 

This solution is unique when the Eqs. (36) are satisfied. 
It should be noticed that when we expand the Fourier transform of the 

distribution function as 

qo = p exp ( -  ~ k20- ikl~c)( l + ~ anle,t) 

the macroscopic variables can be represented in terms of the coefficients 
ant. For example: 

Density 

Local velocity 

Temperature 

Pressure tensor 

{(3 
P = P a22 

n = p(1 + aoo ) 

~=  c +  l + a o o J  

T =  0 +  a2o 1 a~l 
l+aoo  3 ( l+aoo)  2 

1 + aoo j 
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Heat flux vecter 

q = p  [~ a3~ 5 alia20 _alia22] ~ x 
a31q (1+%0)  2 21+aoo  l + a o o J  

Although all the coefficients a},f ) do not have a direct physical 
meaning, use of these coefficients is convenient in the discussion of 
removing secular terms. They simplify considerably the calculations and 
the formulas, espcially those in higher order approximations. 

3. T H E  F I R S T - O R D E R  A P P R O X I M A T I O N  

Assume 

8p L i --=8c L ~ --=80 ~ 
8t = ~ p~' 8t ~ q~' 8t e's~ (38) 

i = 0  / = 0  i = 0  

where Pi, qi, and s~ are dependent on p, c, 0, and their space derivatives. 
Hence, Eqs. (38) must be closed equations. It is seen from Eqs. (35), (37), 
and (38) that the e-order approximation to Eq. (25) is 

/M(~(1))= 11(@--~ l 6~(p0)'] ( - p  q p 8x ) + el, q~ lS(pO))p 8x J 

( 80 208c~ 4 8c 30a0]  
q- e20 \Soq-C~xq-3 8X,]q-e2230~-X q'-e31 8XJ (39) 

Equating the coefficients of e,,t on both sides of the above equation, we 
obtain 

8(pc) 8c 1 8(pO) 80 2 8c 
Po-  8x ' q ~  Sx p 8x ' So=--C~x--50-~x (40) 

40 8c 30 30 
~(1) = a(o~o)eoo + a~ll)e11 + a(1)e (41) 

20 20  3)t22psxe22 231pSxe31 

where -oom(l), a{~ ), and a (1)2o are arbitrary functions o fx  and t. These three coef- 
ficients were taken to be zero in Cercignani's expansion, but they are kept 
to be indefinite here and will be defined later. 

4. T H E  S E C O N D - O R D E R  A P P R O X I M A T I O N  

Assume that 

8a}ff 
~*-(;,~) (n, l) (0, 0), (1, 1), (2,0) 8t ~ ~nt , 

i = 0  

(42) 
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where ~t(j.i) are dependent on p, c, O, a (~) a (~) a (~) a(J) .,'t(J) a(J) and their ~ n l  00~ 11~ 20 ~"" 00~ ~11~ 20, 
space derivatives, so Eqs. (42) must be closed equations also. Differen- 
tiating Eq. (41) with respect to t and making use of Eqs. (38) and (42), we 
get 8~(1) 

# (43) ( ( ~ ( 1 )  t 

gt =,=o \-b-T-/~ 
where 

~, (1,0) ,,:, 
-- -- ~ ' - ) 0  ~ ~(o'~ -~- ~ l l ' ~  ~-~20 ~20 

-- 3)~2--" ~ e22 ~x so ff p 8x p2 c~x Po 

3 o ,o o g o  l 
e31 So + p2 P O /  (44) 

z31 \ p  8x p 8x 8x 

Using Eqs. (38), (40), and (30), we obtain from Eq. (27) that 

Do= ~ ciDoi (45) 
i=0  

4 8c 80 
Doo = ~ 0 7xx e22 + 30 ~ e31 (46) 

Doi=-p i+e l lq i+e2oS i ,  i=  1, 2,... (47) 
P 

Hence the e2-order approximation to Eq. (25) is 

/M(~(2)) = __ jM(~(1), r  [Doo~(1) .~_ Do 1 ._~ DI(~(1)) 

+ D2(~(1)) + \ - - ~ - / o J  (48) 

Equating the coefficients of Coo, e~,  and e2o on both sides of the above 
equation, we get 

8a(o~ ) 1 8 
--P'p +~oo~'("~ + c -~--x + P ~x (Pail)) = 0  

8a (l) 8a(1)+1 = ~ c~c 1 (3 
q' +c~]'~ +0 ~ ~ 1 7 6  p-~x (Pa~l~ a]])gx+p-~x-- (Pa(2~)) = 0 

(49) 
~a (1) gO 2 8a (1) 2 8e ~ 1 1  Sl + ~(~,o) + C ~ 2 o  + a(1) ,.,(1) _ _  
gx 11 ~x+-~ 0 & ~-2o & 

2 8c 5 8 1 
-+-"(~)3 ~ Yx + G T x  (pa(d) = ~ 
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,v(t,0) ~,(1,0) with a(1)22 and a31(1) given by Eq. (41). Six quantities, Pl,  ql, sl, ~00 , ~11 , 
and ~,(~,o) ~2o , are not determined in three equations of Eqs. (49). They may be 
chosen so that secular terms are removed. 

If one puts N = 0  in Eq. (10), it follows from Eq. (49) that 

Pl = q l  = s l  = 0  (50) 

which is equivalent to the Hilbert expansion, and secular terms will appear. 
In fact, in this case, Eqs. (38) with error O(e 2) will become the Euler 
equations, 

8p 8~xC) = 0 
8--/+ 

8c 8c 18(pO) 
8t ~-C~x+p - - - 0 8 x  (51) 

80 80 2 8c 
C~x+ 0 =0 5-i + 5 

Now we consider a small disturbance near the equilibrium state: 

p =  l + p ' ,  0 = 1  +0 ' ,  c = c '  (52) 

where p', 0', and c' are small quantities. In the lowest approximation, Eqs. 
(5!) may be replaced by 

8p' ~- 8c' 8c' 8 60' 8c' = 
8t ~ x  = 0 '  8t §  ( p ' + 0 ' ) = 0 '  3 - ~ - + 2 - ~ x  0 (53) 

Assuming a small vibration 

P'--ple~"+i~~, O' =01 e ~'~+i . . . .  , c =cl  e ~'+i~X (54) 

with real ~c, and substituting Eqs. (54) into (53), we get a set of linear 
algebraic equations in Pl, Cl, and 0~, 

ix 2 ix ]~c ,  ~ = 0 

0 2itc 32 \ 0 1 /  

Equations (55) have a nontrivial solution under the condition 

QK2(2)~2(322+ 5x2)=0  

(55) 

(56) 
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which means Re 2 = 0. Similarly, we can get the equations for %0, (~) a(5)~1 , and 
a(2~ ) from Eqs. (42), (49), and (50). Making substitutions similar to 
Eqs. (52), we get linearized equations that are similar to Eqs. (53) but with 
nonhomogeneous terms, i.e., 

Oa (1) 0a(oll ~_ 51 
~t -&-x = ~  

Oal]) + Oa~ ) 4 a2c ' 
0 a ~  - (57) 

~X ~ 3X 3222 ~X 2 

,%-t ( 5 ) ~(5) 5 020 , 
2 V"ll q- 30u20 -- 

Ox gt 235 Ox 2 

Hence, for the 
expected to be 

small vibration (54), the solutions of Eqs. (57) may be 

%o(1) = (al t + bl)e;~, + i~x 

a~51 ) = (a2t + b2)e ;~' + i~x 

a~l~ (a3t+b3)eXt+i•x  20 

Substituting Eqs. (58) into (57), we get 

(58) 

01 al +bl ) .  ix 2 ix | a 2 t + b  2 = 

0 2ix 32 \ a 3 t + b  3 

which may be reduced as follows: 

- -  (5/231) /t2201 - -  a 3 

)o ix O \ { a l l  

ix ,~ ix]~a2] 
0 iK 3 2 / \ a 3 /  

= 0  

ix ;~ ix J~b2~ + (4//3222) K2c 

0 2ix  3 2 ] \ b  3 /  a 3 \--(5/,~3i)x201 / 

In the case x ~ 0, we have from Eqs. (59) and (60) that 

(59) 

(60) 

(al 1 a 2 -= (x C 1 

a3 01 
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where c~ must be determined so that the right-hand side of Eqs. (60) is 
orthogonal with the null space of the coefficient matrix. In general, c~ is not 
equal to zero, so we get from Eq. (58) that 

a},p~te ;''+'~x, (n,/)= (0, 0), (1, 1), (2,0) (61) 

It is clear that they are secular terms, since Re 2 = 0. Hence the choice (50) 
should be avoided. 

However, if we take N =  1 in Eq. (10), which, by Eq. (40), amounts to 

2 8c 5 
1 8 i,~a(~)) ' sl ~22 8x (pa~] 1) (62)  p~=0,  ql  = pOx~.e 22 3 9p(Jx 

secular terms are removed. In fact, with Eqs. (62), Eqs. (38) become the 
Navier-Stokes equations to an accuracy O(e2), 

ap a(pc) 
Ot 8x 

_ 4~ 0 ( O c )  Oc Oc 1 ~?(pO) -~ 0 
(?t c 0x p 0x 3222 p 0x ~xx 

S t -  COx 3 ~x+ 9--~22p \-~xJ -~ 323,pOx ~xx 

(63) 

The substitutions (52) and (54) lead to a set of linear algebraic equations 
for p~, c~, and 0t, which has a nontrivial solution under the condition 

Qx2(2)----23-b22(WI-~-W2)K2"~2(W1W2K2-~-~)K2-~-(D21f4=O (64) 

with wl = 48/(3222) > 0 and W 2 = 5e/(3231 ) > 0. It is easy to show that the 
roots 2 of Eq. (64) always have negative real parts for any ~c2> 0. In fact: 

1. The real root of Eq. (64) must be negative, because all coefficients 
in this equation are positive. 

2. Equation (64) has at least one real root 2~, which satisfies 
--(WI'~-W2)K2<21<O, because for any 2 1 ~ - - ( W 1 - ' ~ W Z ) K  2 We 

have 
( - 5 )  ~E ~c 4 

Q~2(21) --.< 21 W1W2K2-~--g -~-W 2 <0 

3. The other two roots of Eq. (64), 22 and 23, must satisfy 

22 + 23 = - ( w  I -~- w2)/s 2 - 21 ~ 0 
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If both 22 and 23 are real, they are negative because of 1; if they 
are conjugate complex, they have negative real parts. 

Therefore, the solution of Eqs. (63) is stable. It is seen from Eqs. (49) 
and (62) that 

aa u) 1 8 ~(1,0) O0 
wOO ~ - -  r 8x p 8x (Pa]])) 

8 aa o) 1 8 
_ _ _  o o  ( p a ( a l o ) )  (65) c~]]'~ = 8x (ca]")) - 0 8x p 8x 

8a (1/ 2 ~",1~"(1) 2 __BC_a(1 )_a0 ~,(Lo) 2o 0 a O) 
~2o = - c  0x 3 8x 3 20 8x 11 8x 

Comparing the coefficients of ent on both sides of Eqs. (48), we determine 
all coefficients a (2) except a (2) a (2) and a (2) which are arbitrary. The coef- nl , 00, 11 ~ 20 
ficients a~ 2) and a(3] ) will be used in the next section: 

1 [ l @ a ~  a ( 2 ~ ) ) + ~  8 [~"22 } + 4 8C , (11 ~,~a(,)) 
"22"~(2)'~- --~222 p \  8 t  /t o V ~ X  (a2~ -k ~X it" 31 

C 8 a  (l)22 1 408a]"~)-k 24o(a]])) 2 (66) 
+ 3p 8x p 8x 

1 [1 (Sa~"] + 3 8 0 i a  m -Oq  
17/31 

11 8c .,) 60 8a~1)~_ 30 8a(zl_ ) 

c't'-'(1' (~ 6 )  a;''a(')lll 22J ~31 32 a(X)a ; ~ -  24o -- ~ J~22 (67) -}- 40 l I 20 1 p 8x 

1 (~p4 90 ~"223a(1) 27 2 a (l)a (1 ) -9  2 a O)a (1)'] 
80a(l)-} 40 11 22 5 22 11 2 2 ?  

/./(2) ~ (68) 
u33 ~ 31 5 p  8X 2 0  

1 [ - 1 0 0 0  40 ~ (') a(  ) _  _ _ _  ,~(l)~t Ga31 /n(1)]2h20,20__(n(1)]2/~22,22 
40 - -  240 k~pp ~xx-3' - 3p 8 x  ~,--20 J "M40 k"22 ! "M40 

6 (~ ") ]~ 11,31~ a(1)a(,)] 
5 222(a~1))2- 23~ +-,.M4O J 11 3~ J (69) 

1 1 8 0 0  s~ 8 a(,)a(,) F,(2) __ 1 _ _ _ _  .q(l) _~ + '~31 
"42 - -  *~42 L3p 8 x  -31 3p 8X k ~ ' 'M42 3 J 11 31 

t,~'~M42 . . . .  I " 2 0 " 2 2  k " M 4 2  + ~22 (a(21)) 2 
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a(2) 1 fh22,22 108 . "~ \~22!  44 =G \"M. +5g<2) (71) 

a(s] ) 1 [(2h22,31 (1) (1) (9h2o,31 (1) (1) (72) = 7 - ~  M5l + 4 2 3 1 + 4 2 2 2 ) a 2 2 a 3 1  + t - - M S 1  + 1 0 " ~ 3 1 ) a 2 0 a 3 1 ]  
A51 

a(2) 1 (2h22,31+6) .31+t ; .  I 1,,(1)~,0) (73) 
53 ~ 5 3  M53 v't~22)t*22 u31 

a ( 2 ) _ l f h 3 1 , 3 1  2~ ) 
60 - 2 6 o  \ v6o + 231 (a(3~]) 2 (74) 

a(2)62 ~ - ~ 6 2 ( h ~ 6 3 1 n t - ~ ' ~ 3 1 )  ( a ~ " '  2 (75)  

and ",,/"{2) -- 0 for all  other  (n, l). The coefficients h~'~ "c' in Eqs. (79)-(75) are 
defined by 

1 
[JM(e,<, e.',c,) + JM(e.,,c,, e.,~,) ] = ~ h"t""r'~ram e,,t (76) 

nl 
It is not  difficult to get 

h11,11 = 240, /,H,2o _ 3 o 
M22 "M31 --  2 A40 

1~11,22 3 ,~4o, /~11,22 _ 27 
= - - -  "M33 - -  ~ "~4o .... --M31 l 0  

It may be seen that h.'r."z"= 0 u n l e s s  n = n ' +  n", and that  "" Mnl 

MOO --  --  'tM20 '~Mnl "'Mnl 
h" ' r ' / ' c '=0 if t l ' - l " ] > l  or l > l ' + l "  Mnl 

(77) 

The symbols (~?a~.{)/#t)o in Eqs. (6) and (67) are to be unders tood similarly 
to those in Eq. (43). 

5. T H E  T H I R D - O R D E R  A P P R O X I M A T I O N  

The e3-order approximation to Eq. (25) is 

iu(~(3~) = !p [Doo r162 + Do1 ~r + Do2 + DI(~ (2)) + D2(~ (2~) 

+ 
\ 0t  ] 1 - I - \  ~t //0A 

__ [ jM(~(1) ,  ~ ( 2 ) ) + j M ( ~ ( 2 ) ,  r  (78) 
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Equat ing  the coefficiens of eoo, e11, and e2o on bo th  sides of Eq. (78), we 
get 

1 63do~o ) 1 63 
- p2 + ~o l ' l)+ ~o 2'~ + c W +-p ~ (pa~]~) = 0 
P 

q2 + ,.1(1,1)_1_ rv(2, O) -1- a(1),.~ + c oa~) 1 63 - z (2) a(2)~] 
~11 --~11 -- OOUl --~-x + p ~ x  Lptaa~ -It- 22 ! 

Oa (2) 63c 00 q_ n(2) _ _  __ 
+ 0 -~---  x ~ 6 3 x - 0  (79) 

-~(z/ 2 ,~a (2/ 5 63 2 ~7r _]_ ~ 1 1  _}_ 
$2 -~- ~20 m(l ' l)  -}- m(2'0) - } - = 2 0  ~ a l l l ) q l -  u00 Ol "q- C ~ - - -  x - k -  m(l)e  ~ 0 63x 9fip-~x (pa~3])) 

2 63c (,,(2) + m(2)] A- rt(2) 630 

-~ 3 ~X t"20 "22 1 - - " 1 1  ~XX = 0  

where nine quantit ies are to be determined.  If  one puts N =  2 in Eq. (10), 
one obtains  f rom Eqs. (79) that  

a ( l ) - -  a ( 2 ) =  0, ~(1'1)-- ~X(n/'O) = 0 , (n, 1)= (0, 0), (1, 1), (2,0) (80) nl - -  nl ~n l  - -  

which is equivalent  to the Enskog expansion,  and the secular terms appear  
again. In fact, with Eqs. (80), (66), and (67), Eqs. (38) become 

p, + (pc)x = o 

p(c, + ccx) + (pOL + G = 0 

O ,+cOx+~ O c x + +  ,~x + 3-~ cx~ = 0 (81) 

4o9 2co2 {40c2+ 9(00~) _ 6 0 I I ( p O ) x ] x }  

9 30920 
= - ~ ~o00~ + 2-~p 2 (95pcxO X - 160p~Cx - 14pOcx~) 

to an accuracy O(e3). Here  subscripts denote  differentiation with respect to 
t or  x, and 

2e 
CO - -  '~22 - -  3~31 ' ~ = pea~]) + pe2a~ 2), ff = pea(2~ ) + pe2a(222) 

According to the procedure  outl ined by Bobylev, (~2) rewrit ing x/w and t/w 
as x and t, using Eqs. (52) and (54), we get a set of  linear algebraic 
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equat ions  for p l ,  01, and ci ,  which has a nontr ivial  solution under  the con- 
dition 

Q~2(2)=18; tB+6922~cz+2~c2(30+97~cz -14 tca)+15d(3+4tc2)=O (82) 

Equa t ion  (82) has a positive root  as long as ~c 2 is large enough,  because (1) 
Q~.2(0) > 0 and  Qp_( + or)  > 0 for any given ~:2 > 0; and  (2) Q~(~c 2) < 0 for a 
sufficiently large k 2 >  0. Hence, Eqs. (80) lead to secular terms. 

_ ,(1,1) = ct~ll,~ } = ,(1,1)_ 0, the secular If one puts N = 0, i.e., P2 = q2 = s2 - ~oo ~20  - -  

terms still appear .  This is seen by a rguments  similar to those following 
Eqs. (50). 

We find that  the secular terms can be removed  by put t ing N =  1, i.e., 
by requiring 

P2 = q2 = $2 = 0 (83) 

~(I.l) = 0 
O0 

~.(~,,} _a{~)," 1 63 ~pa(2) ~ (84) 
= 

2 1 263c 21 5 63 2 
,(t, ,) = - -3  a] )q _ a(1)s - x--z--  (pa~p) ~20  1 O0 I - - ~ X  at22 Y / ) O X  

and 
~ ( 2 )  1 63 ,(2,0) 0%0 (pa~2)) 

~oo = - c  & P & 

6 3 "qa (2) 1 6 3 
~ .o )  = _ ~?~ (ca]2,) _ 0 Y oo (pa(22o)) (85) 

63x p 63x 

~.(2} 2 Oa~] ) 2 3c 630 
e~ (2,0) v ~ 2 0  0 a (2} - -  a (2) 
~2o = - c  ~?x 3 63x 3c3x 20 11 ~xx 

In fact, the equat ions  for p, c, and  0 to an accuracy O(e 3) are still Eqs. (63), 
so the equil iblium values p = 1, 0 = 1, and  c = 0 should be obta ined as 
t ~ or. The equat ions  for aoo,(~) a~,(l) and ~2o'~(~} to an accuracy  O(e 2) can be 
writ ten as 

% 0 = _  63a(o~ } 1 {? 
63t p 63x 

6341 / _ 

0t 

63.(/) ~20  - -  

63t 

( ) ~'~(1) 1 3 ~ - o o  e~a(l), ,  1 3 ] 
8 ca~,,) - O  L oo.1 ( . 4 ' )  p +p 

8'~(~) 2 3a (~) 2 63c (1) ~0 __~20 0 11 a(1)--a~ -~x 
c 63x 3 63x 3 63X 20 

~ ( %  +a(,)~ +_~p~x(Pa(31) 2 &  - -  8 U l l  71 0 0 ~  3 CX J 

(86) 
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It can be shown that the set of Eqs. (86) has a stable solution also. The 
proof is easy. The values p = 1, 0 = 1, and c = 0 are reached after a suf- 
ficiently long time, so it is known from Eqs. (41) and (62) that 

a O) -0 ,  (n,/) = (2, 2), (3, 1),...; q l = s l = 0  (87) n] - -  

and from Eqs. (66) and (67) that 

a(2) =~22 [)]'40(a]]))22246~a]/1)]3 OX 
(88) 

a(32,=1__~_{32 a(1)a (1) ~3a I'~\ - 3  ~ 2 0  
1~ 31 k 40 ] l 20 (~X /] 

Hence Eqs. (86) become 

0a(2~ ) 0all) 
3t 3x 

nail) ~a(l) e 8 [~3a]]  ) ,~40(a~]))21 0all)_ ~ oo ~ 20 ~_ - - -  (89) 
3t - 3x 3x ~22~x ~x 

0a (1) 20a (1) e O ( ~ O a  (1) 5 2 a(Ua,1)" ] 
20 - -  11 ~. 20 40 11 20 ; at 3 ax ~ &  ax 3 

which has a steady-state solution a(o~ ) --a(l~ = a(~)2o --0. It can be seen from a 
discussion similar to that relating to Eqs. (63) that this solution is stable. 

The requirements (84) and (85) determine the time evolution of r (in 
e 2 order), which in turn determines the normal solution in k space through 
Eq. (23). However, the explicit reltion of Eqs. (84) to the usual fluid 
equations is difficult to obtain, due to the complexity of the formulas 
relating the expansion coefficients :dJ,0,z to the usual hydrodynamic quan- 
tities. 

6, EXTENSION TO N O N - M A X W E L L  M O L E C U L E S  

Before discussing the higher order approximations, we extend the dis- 
cussion in the foregoing sections to non-Maxwell molecules. 

Substituting Eq. (23) into Eq. (19), we obtain for non-Maxwell 
molecules 

/(~) _j,(r r [~  ] = + Do + Do(~) + DI(~) + D2(~) 
P 

(90) 
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where 

579 

1(4) = f dh' dk' g(/~. fi, k ' ) [exp(-Okt2)]  

x([exp(Okk"ft')] {~[k ([c+h')-k']+~[k ([c-h')+k']} 

- [-exp(0k �9 k ')]  [{(k - k') + r  (91) 

J'(~, ~1)= f d~' dk' g(/~. ~', k ' ) [exp( -Ok '2) ]  

- [-exp(0k. k ')]  ~ ( k  - k') r (92) 

Assuming that qg, and ~o o are Fourier transforms of 

f ,  =fo(1 + h )  (93) 

fo = fo(v) = p(ZTt0) - 3/2 exp( - v~/20) (94) 

respectively, where v I = v -  c~x, h = h(v), we get 

~Po~ = f [exp( - ik- v)] fo h dv (95) 

Substituting Eq. (93) into Eq. (1), we have 

C(f~, f~) = pfoI(h ) + C(fo h, Lh) (96) 

where 

= f dw d~' ua(h. ~', u) p -lfo(w)[h(w')  + h(v') - h(w) - h(v)] (97) 7 h) 

We obtain from Eqs. (91) and (97) that 

q~oI(r = ; [ e x p ( - i k .  v)] foI(h) dv (98) 

Assume 

E'.t = ( - 1  ) ' -  ~v2(n - l ) ! !  n!O(,,+,)/2 v]P,(O,.dx)r ,+'/2 (v2~ (99) =~,, - i ra  \ 2 0 ]  
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where Lt~ are generalized Laguerre polynomials. It is easy to show that 

q~oe,,l = f [ e x p ( - i k -  v)] foE'.l dv (100) 

f foE'~lE',,i, dv = pO-~N~t 6~, 6lr (101) 

1 (n-- l )!?(n+l+l)!  
N " =  2 / + ~  (n +/)!? (n?) 2 (102) 

Suppose that the distribution function (17) can be expanded as 

f = fo I l + ~ anz(x, t) E'~z(v)J (103) 
nl 

This means that the integral 

f f o' f2 clv (104) 

exists and is bounded. Such functions span a Hilbert space W. It is easy to 
see from Eq. (100) that Eq. (103) is equivalent to 

~p = ~Po I l + ~ a~t(x, t) e~t I (105) 

- ~ oJ'~(J) I f  f E W ,  we In case ~9 is the normal solution ~0,, we have a , ~ - Z j =  1 ~ -nt. 
will denote ~p r Yf also in short. That is, we use the same symbol W for the 
space transformed from ~r by Eq. (11). Supposing that (11) 

7 ( F , )  y~ ""'" ' = - -  A n t  ( O ) E n ,  r (106) 
n'l '  

and using Eq. (101), we get 

4..),'(0) = -o"p  'N.,) f foT(E;,,) F~'.,,, dv 

0"' f =4p  2 N~/, dv dw dfi' ua(fi" fi', u) fo(v) fo(w) 

x [ E ' ~ , ( w ' )  + E ' o , ( v ' )  - -  E ' , (w)  -- E ' , (v )3  

• l - E ' , , , ( w ' )  + E~, , , , (v ' )  - E ' , ~ , ( w )  - E ' , , , ( v ) ]  ( lo7 )  
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where Eq. (97) has ben used. It is clear that 2~/ ' (0)>0 and 2~,/'(0) depends 
on 0 in general. Denote 2~'/'(0 = 1 ) -  2~) r. For non-Maxwell molecules, we 
take 

~I o = 1 ( l o s )  

instead of Eq. (34) for determining the units of time and length. 
It can be proved from Eqs. (95), (98), (100), and (106) that 

Denoting 

I(G,) = - ~ 2~/'(0)e.,c (109) 
n'l' 

~nl(O) = On/2N~l/2 ent 

we define the inner product 

(G,(0), G,,,(0)) = 6..,6,,, (110) 

and take {Gt(0)} as a basis for ~f. It is easy to prove that 

~Nn,l, On] 1/2 
(~.,,,(o), z [~ . , (o )] )  = - G " ( 0 )  L N---~-70"' J 

Taking into account Eq. (107), we find that I is a real, symmetric operator 
and that the zero eigenvalue is threefold degenerate with corresponding 
eigenfunctions e0o, e~,  e2o, i.e., 

I(eoo) = I(e l ,  ) = I(e2o) = 0 (111) 

Denote the subspace spaned by eoo, el~, and e2o as ~r and the subspace 
orthogonal to ~ as J4 .  Since I has a unique inverse in ~2, we have 

(n', l')'~ = (2, 2), (3, 1),... (112) e., = - y~ ~5"(o)  I(e.,,,), (,,, I) J 
n'l' 

and it is quite evident that 

E n'l' n"l" __ G ,  (o) ~.,,, (o) - G.,,,~.,, 
n']' 

We obtain from Eq. (107) that 

;~5"(0) = G ' (O)6 . . ,  ~/ ' (0 )  = ,,5'(O)a,,, 

(113) 

822/45/3-4-15 
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Ins tead of Eq. (76), we now define h~)r""t"(O) by 

and denote  

! 
, , Vh,,'l,n"c'(O~ e [J(e~,r, e~,,c,)+J(e~,,t,,, e.,~,)] = / ~  ,,l I .a 

nl  

h~) ''n''' = hJ~"r'(O = 1) 

It  is easy to see that  h,~i rn''r' has propert ies  similar to Eq. (77), but  it m a y  
not  be zero even though  n va n ' +  n". 

Fo r  non-Maxwel l  molecules,  Eqs. (40), (62), (65), and (83)-(85)  m a y  
be kept  unaltered. Subst i tut ing Eq. (35) into Eq. (90), we obta in  f rom the 
zeroth app rox ima t ion  that  

~(o) = 0 

and f rom the first app rox ima t ion  that  

a~lo ~ = 0, n = 4, 6 .... 

a ( l~_  3030  nl 0 
n,1 p . 

( 1 ) _  4 0  ~?c . n . 2 , 0 ,  
an'z 3p ~X /2'22 ~" )' 

a(1)=0 ,  / = 3 , 4  .... 
nl  

n = 3 ,  5,... 

n =  2, 4,... 

(114) 

Therefore  Eq. (63) should be rewrit ten as 

~p ~(pc) 
Ot Ox 

#c 0c 

#t Ox 

O0 00 
~t - C~x 

10(pO) 4e 0 F 220 00c7 

2 0 ~C 820 22 0 ( ~ C )  2 

-~ 7x+-~-p #=( )\ax/ 

(115) 

The solut ion of Eqs. (115) is stable, so the value p = 1, 0 = 1, and c = 0 are 
reached after a sufficiently long time. Therefore  we get f rom Eq. (114) that  

a ( l ) - 0  (n , / )  = (2, 2), (3, 1),... (116) 
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In this case, the e2-order approximat ion  to Eq. (90) is 

Hence 

I(~(2)) _ 4 8a~] ) 8a(2~ ) 
3 8x e 2 2 + 3 - ~ - x  e 3 1 - - Z  E 

nl n T n ' l "  

a ( 1 ) , • ( 1 )  hn'l'n"l"o 
n'l'  ~ n " l "  nl ~'nl 

(n' , l ')  ) 
o),(1, 13,(2,o) 

( n ' , / ' ) ]  

n ~ n'l 'n"l" 

?~,(1) 
a (2 ) -  -- 3 ~"2~ /Anl - ~ ' E  ]Annll E ~'r~n"c"'~*~"(1)'~(1) l,,,'l'~"t", n = 3 ,  5,... n,1 --  ~ 31 

i-/* Fl'['n "/" 

c~a (~3 ,q(2)_ 4 '~11 ~ n2 ,9(1)//(1) hn ' l ' n " l  " ~n,2-- 3 8 X  ]'/~22 q- / ' ]'/n*2 y[  n = 2 , 4  .... ~ n , l , ~ n " l ' , , ~ n * 2  

n * I1 'fin "1" 

a},~)~ = O, l =  3, 4,... 

(117) 

(118) 

We find that the form of Eqs. (86) is not  changed, but  ,,~-(2) has a different 
expression from Eq. (66). It is known from Eq. (118) that Eqs. (86) will be 
reduced to 

8a(1)oo 0a111 ) 
8t 8x  

8a (1) Oa(ffo ) 8a(21o ) 1i 4~ 22 82a~111 8a(')  2ga(1)~I I  X ~ . n2 LII,ll (119) 
at  ~X ~X ~- T ]~22 ~X2 11 ~ X  Z ' ~ # n * 2 H n * 2  

n* 

9 ( 1 )  2 8a~ll ) 5e 31 a2a(2~l 10e __8 (a(1)a(1)~ V .31 a2o, ll a2o ~_ - -  
8t 3 0 X  S 31 8X 4 8x ll 20 ~ Z_.nr,*l"n*~ n* 

after a sufficiently long time. The solution of Eqs. (119) is stable, too, so the 
values - ( 1 ) - - ( 1 ) - , ~ ( 1 3 = 0  will finally be reached. Combining this con- MOO --*~11 - -~20 
clusion with Eq. (116), we get that  

a (~) 0, (n , / )  = (0, 0), (1, 1),... ill ~-" 
(120) 

and from Eq. (118) that  

al2)=O, (n , / )  = (2, 2), (3, 1),... (121) 
nl 

In this case we find that the e3-order approximat ion  to Eq. (90) is 

i(~(3)) __ 4 Oa~] ) e22 -q- 3 8a(2~) 
3 8x "-~--x e31 (122) 
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so we have that  

a ( 3 )  - -  O, n = 4, 6,... 
n , O  - -  

c~a (2) 
a(3)n,l ---- -- 3 ~ X  ~ #~i 1, 

a (3)_  4~3a~) n2 
,,,2-- 3 Ox #2~, 

a (3) -- O, l = 3, 4,... 
n , I  - -  

n = 3 , 5  .... 

n = 2 ,  4,... 

(123) 

I t  is quite evident f rom the above  discussion that  Eqs. (40), (62), (65), 
and (3)-(85)  do not  cause secular terms, neither in the case of Maxwell  
molecules,  nor  in tha t  of non-Maxwel l  molecules. 

7. THE H IGHER O R D E R  A P P R O X I M A T I O N S  

I t  can be p roved  by induct ion tha t  the expans ion  wi thout  secular 
terms can be ob ta ined  for j>~ 3 by put t ing N =  1 in Eq. (10), which means  
that  

p j  = q j  = s j  = O, 

~ ( j - -  1 , 1 )  _ I~ 
O0 - -  

o~]j--l,1)__ __,q(j--1),q 1 (~ 
- - o o  ~ ' - - - - ~ x  (Pa~{))  

P 

e~{ i ' ~  i = 2 , 3 , . . . , j  (124) 

2 ~ c  5 0 ~(2~- 1,11 _ 2 a ~ -  1)ql - -  a U-  l)s 1 - -  a U) - - -  - -  ( p a ~ { ) )  
- - ~  0o 3~x  22 9pOx 

1 a 
or j '~ - - -  c (pa~J)  ) 

oo - Ox p ~ x  

(125) 

c?a(2~ ~ 2 #a~  ) 2 0 c  ~0 
~ ( j , O )  _ _  _ _  C 0 - -  a ( j )  - -  - -  a U) 

2o - ~x 3 ax  3 0 x  2o ~?x 11 

This conclusion is correct  for non-Maxwel l  molecules as well as Maxwel l  
molecules. The  p roof  is not  difficult. 

In fact, it is seen f rom Eqs. (124)-(126) tha t  Eqs. (115) with the special 

~a (j) 1 
~ , ( j . o ) -  - - - -~  ( c a ] J ) )  - 0 ~ oo (pa(zJo)) (126) 
~ n  - O x  O x  p g x  
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form (63), together with Eqs. (86), become exact equations; the exact 
.q(j-l) and a (j 1) are written as equations for a(o~ b, ~11 , 2o 

~+7(J 1) Oa(o j t) 1 wOO 

3t c 3x p ~x (pa~{ 1)) 

1) 1 c~ 
Oaj - ~ _  ~ (ca~{- l ) )_O Oa(oJo ( p a g - b )  

3t 3x Ox p Ox 

1 3  [ a  u + -  ~--(pa(2{))] 
- e L  oo ~)q~ p o x  A 

Oa~2{;- 1) 3a u 1) 20 c 
Ot 3x 

2 0 c3a~{- 1) 2 O C , 1 (~0  _ _ _  , ~ t J  ) - -  - -  / ~ ( j - -  1" 

3 Ox 3 3x ~2o 3x "I1 

2 2 3c ... 5 ~ 1 -- e 5a]~ 1)q, +a{oJo-')s,-a----aU' --3 Ox 22 +-~p-~x (Pa~ )) 

(127) 

As the inductive assumption, we can take 

a U - 1 ) - 0 ,  (n, l) = (2, 2), (3, 1) .... n l  

a U - ~  (n, /)  = (0, 0), (1, 1),...; n l  

a(J) -- O, n = 4, 6,... nO - -  

~ a ( j -  l) 
20 n l  

akq = - 3 ~ m l ,  

a U / -  4 c~a~- 1~ 

. , 2 -  3 ax ~i I ,  

a(,j ) = 0, l = 3, 4,... 

n = 3 , 5  .... 

n = 2, 4, 6,... 

(128) 

i = 2 , 3  ..... j -  1 (129) 

(13o) 

after a sufficiently long time. Then Eqs. (127) may be reduced to 

~?t 0x 

Da]{ -1) ~oo'3"~(J ~)Oa(z~-b  4e 6~2a] j - l )  
0 ~ -  3x 3x k T/~2z22 ~?x2 (131) 

Da(2s 1) 263a~{-1) 5g 02a(2~-') 

0t 3 c~x +T#~I ax 2 

1) a ~ - 1 ) =  a ~ - 1 ) =  0 should be reached after a which prescribe that a(o{~ - = 
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sufficiently long time. Combining this conclusion with Eqs. (128) and 
(129), we get 

a(J+~ ~  (n, l )=  (0, 0), (1,1),...; i = 2 , 3  ..... j (132) nl 

Therefore, the equation for {(J+ 1) is reduced to 

~, ,7(J)  
i(~(j+ 1~) _ 4 ~a~) ~20 (133) 3 c~x ez2+3-~--x e31 

It is sen from Eq. (133) that 

a ( J+  1) = 0, n = 4 ,  6 .... 
n,O 

~ , ~ ( J )  
, q ( j +  1) = __ 3 ~ 2 0  

a( j+  t )  _ 
n2 

a ( j+  1) = 0 ,  nl 

and from Eq. (130) that 

a/,~=0, 

4 Oa]~ ) n 2 
5 ~ ~ '  

l =  3, 4,... 

n = 3 , 5  .... 

(134) 

It is evident from Eqs. (132), (134), and (135) that the proof has been 
accomplished. 

It should be noticed that secular terms similar to Eq. (61) do not 
appear, although the linearized equations obtainable from Eq. (115) are the 
homogeneous equations corresponding to the linearized inhomogeneous 
ones of Eq. (119). In fact, for small vibrational variations to the solution of 
Eq . ( l l5 ) ,  p', c', 0 ' ~ e  ~'+;kx, where 0 > R e 2 ~ O ( ~ ) ,  and the order of 
magnitude of the inhomogeneous terms is O(e). By a discussion similar to 
that for Eq. (57), it can be seen that 

a~)l~ ~ cl I cte~t+i~x~o(1) 
a~2~2 / \ 01! 

which is different from Eq. (61), so these are not secular terms. Similarly, 
we have 

a~l t ~e;t+ikx~o(1) 
a~jo~ l 

and these are not secular terms either. 

n = 2 ,  4,... 

(n, t )= (2, 2), (3, 1),... (135) 
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8. C O N C L U D I N G  R E M A R K S  

In this paper we have shown that when the distribution function and 
the hydrodynamic variables are expanded in powers of the small Knudsen 
number e, the requirement that no secular terms should appear causes the 
corresponding expansion of #/Ot to be terminated after O(e). Such a trun- 
cation was advocated by Cercignani on macroscopic grounds, since 
necessary boundary conditions for equations beyond Navier-Stokes cannot 
be established. In other words, we have shown Cercignani's truncation to 
be a consequence of the elimination of secular terms. 

When the discussion is confined to normal solutions, as in the present 
paper, our method, in which the hydrodynamic variables are expanded in 
powers of e, leaves some coefficients undetermined. Examples are ,,~J~t,~ 0) ~ n l  ~ ,  

with (n, l ) =  (0, 0), (1, 1), (2,0) and j = l ,  2 ..... This might be taken as a 
point in favor of Cercignani's alternative procedure, in which the 
hydrodynamic variables are expanded in powers of eN+l=  e2. However, as 
will be shown in a companion paper, (15) this freedom is precisely what is 
needed when the normal solution is to be smoothly connected to a solution 
through the initial layer. In contrast, Cercignani's procedure would, at this 
point, generate yet another type of secular term. 

Finally, both the Hilbert and the Enskog expansions may be used to 
discuss weak showk waves. The same discussion may be performed with 
the modified normal solution obtained in the present paper. The reason is 
that the shock wave problem is a steady one, and secular terms do not 
appear anyway. The same remark applies to the discussion of any steady 
transport process. In other words, our method leads to the same transport 
coefficients as the Enskog expansion. However, when one is concerned with 
relaxation processes, such as the formation of a shock wave, our method is 
superior. 

The present method is different from the multi-time-scalling method, 
which is used by some authors to remove the secular terms in the normal 
solution under quite special conditions. (131 
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